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A theoretical model for the instability of two-dimensional turbulent boundary layer
over compliant surfaces is described. The principal Reynolds stress is modelled
by a well-established mixing-length eddy-viscosity formulation of van Driest. The
perturbations of the mean velocity and Reynolds stress fields are coupled via the
turbulence model. The investigation of instability is carried out from a time-asymptotic
spatio-temporal perspective that classifies instabilities as being either convective or
absolute. The occurrence of convective and absolute instabilities over viscoelastic
compliant layers is elucidated. Compliant surfaces with low damping are susceptible
to convective instability, which gives way to an absolute instability when the surfaces
become highly damped. The theoretical results are compared against experimental
observations of surface waves on elastic and viscoelastic compliant layers.

1. Introduction
The experiments of Hansen et al. (1980), Gad-el-Hak, Blackwelder & Riley (1984)

and Gad-el-Hak (1986) show that surface waves on viscoelastic compliant walls under
a turbulent boundary layer may be divided into two principal types: the slow waves
and the fast waves. The slow waves, whose existence was first noted by Boggs &
Hahn (1962), are a series of large-amplitude spanwise-aligned waves that typically
propagate at less than 5% of the free-stream speed. They are found on compliant
layers possessing a significant level of material damping, and have been termed static
divergence (SD) waves because of their nearly stationary appearance. The fast waves,
on the other hand, are a series of small-amplitude wavetrains that travel with phase
speeds in the range of 30–50% of the free-stream velocity. They have only been
observed on nearly elastic layers. Gad-el-Hak et al. also noted that prior to the
occurrence of the SD waves, the mean velocity field and the r.m.s. fluctuations of the
turbulent boundary layer on a compliant layer do not differ perceptibly from those
on a rigid surface. With the onset of the waves, turbulence in the boundary layer was
noticeably enhanced. The latter signifies an altered state of the boundary layer. The
occurrence of the slow waves also increases skin-friction drag. These have significant
implications for the use of compliant materials in underwater applications.

A good part of what we know about the interaction of flow and compliant
boundary has been derived from normal-mode stability analyses of inviscid and
laminar boundary-layer flows. At the most basic level, the instabilities may be divided
into two groups: flow modes and wall modes. Flow modes refer to modes that are
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derivatives of eigenmodes originally present in the same flow over a rigid boundary;
the Tollmien–Schlichting (TS) instability of a laminar boundary layer is a prime
example. Wall modes pertain to modes that are brought into being by the compliant
quality of the wall. They have been termed flow-induced surface instabilities (FISI)
by Carpenter & Garrad (1985) and compliance-induced flow instabilities (CIFI) by
Yeo (1988). The wall modes are associated with the unstable interaction between the
inertia of the flow and the dynamic and static deformation modes of the compliant
wall. The former leads to waves that travel at a fair speed (termed travelling wave
flutter or TWF) whereas the latter produces nearly static waves at incipience (and
hence termed a static divergence instability). Yeo & Dowling (1987) were able to
derive general criteria that relate the occurrence of these waves to the dynamic and
static wave-bearing characteristics of a general compliant wall. Benjamin (1960) and
Landahl (1962) showed that wall compliance exerts a favourable influence on the TS
instability of a laminar boundary layer. Benjamin (1963) introduced a classification
of the instabilities based on the energy required to activate or create the waves. The
TWF modes are positive-energy waves and are designated Class B by Benjamin.
Such waves would be attenuated by wall damping, which removes energy from the
dynamical system. The TS waves are negative-energy or Class A waves. They are
amplified by wall damping, which removes energy from the system (see Crighton &
Oswell 1991). Landahl and Benjamin have also classified the static divergence modes
as Class A because they are destabilized by wall damping and appear to require wall
damping for their occurrence. Benjamin also introduced a Class C wave. Class C
waves, as typified by the Kelvin–Helmholtz instability, are characterized by mainly
conservative exchange of wave energy between the flow and the wall. They tend to
be relatively insensitive to small variation in wall damping.

The highly distinct surface waves observed in the turbulent-flow experiments of
Hansen et al. (1980), Gad-el-Hak et al. (1984) and Gad-el-Hak (1986) clearly represent
deviations from mean-flow conditions that could not be ascribed to random turbulent
fluctuations. Indeed, the slow and fast waves exhibit clear semblance with the SD
and TWF waves as predicted by temporal stability analysis, and are hence, in all
probability, manifestations of wave instability. Duncan, Waxman & Tulin (1985)
considered the normal-mode stability of potential flows on compliant layers in which
the perturbation fluid pressure was modified by a complex factor Kp exp(iθp) to
simulate the dynamics of laminar and turbulent boundary layers. Values of Kp and θp
were obtained from published literature. Despite the relative simplicity of their model,
Duncan et al.’s results exhibit fairly good qualitative consistency with the experimental
results of Gad-el-Hak et al. Evrensel & Kalnins (1988) pursued a more traditional
line of stability analysis in which the turbulent boundary layer was represented by its
time-mean velocity profile. The mean velocity profile was modelled by the 1

7
-power

law. They reported some quantitative agreement with the slow-wave results of Gad-
el-Hak et al. Several other workers, notably Ffowcs Williams (1964), Semenov (1971)
and Zimmermann (1974), had also investigated the action of compliant surfaces on
turbulent boundary layer by focusing attention on the dynamics of the sublayer, a
semi-turbulent regime of the flow adjacent to the wall that governs the production of
turbulent vorticity. Although the overall concept underlying their approach appears
to be good, progress in this direction has been largely hampered by the lack of a
good sublayer model.

The appearance of surface waves on compliant surfaces subject to a turbulent
boundary layer is pursued in the present work from the stability viewpoint. The
present study differs from those of Duncan et al. and Evrensel & Kalnins in two
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key areas: the wave growth model and the physical model. Instead of a conventional
normal-mode growth model, the time-asymptotic spatio-temporal disturbance growth
theory of Briggs (1964) is adopted here. In the realm of physical modelling, the effect
of turbulence production is incorporated, whereas the models of both Duncan et al.
and Evrensel & Kalnins are essentially quasi-laminar.

Briggs’ theory shows that an unstable disturbance in an open physical system,
such as a boundary layer, evolves in one of two distinctive manners: it may grow
in size as it propagates away from its initiating source, in which case it is termed a
convective instability; or it may grow in an expanding neighbourhood of the source,
and is termed an absolute instability. Convective instability assumes the appearance
of an amplifying travelling wave or wave packet, whereas absolute instability exhibits
a stationary appearance because of its non-propagative character, and is moreover
self-sustaining when excited. Accounts of the theory may be found in Bers (1983)
and Huerre & Monkewitz (1990). The theoretical dichotomy of convective and
absolute instabilities matches well the observed behaviour of the fast waves and
slow (or SD) waves. Because of the stronger physical basis on which it is founded,
the asymptotic spatio-temporal theory offers a more complete picture of the growth
and development of instability waves in open dynamical systems than could be
gleaned from purely modal analyses. Yeo, Khoo & Zhao (1996) found that absolute
instability eigenmodes might exist in a Blasius boundary layer over soft compliant
surfaces, although the same flow seems to admit only convective instability on a rigid
surface. The theory has also been applied by Yeo, Khoo & Zhao (1999) to modified-
potential-flow models of laminar and turbulent boundary layers, following Duncan
et al. They found, interestingly, that uniform potential flow over compliant surfaces
with non-zero damping admits only absolute instability. They also discovered that
the onset velocity of convective instability converges rapidly onto the onset velocity
of absolute instability for a turbulent boundary layer when the compliant layer
possesses significantly high damping, but this is not so for a laminar boundary
layer.

Duncan et al.’s modified potential flow is clearly inadequate as a mechanistic
model for a turbulent boundary layer. Moreover, their model is greatly restricted by
its dependence on the availability of suitable data for Kp and θp. Evrensel & Kalnins
considered a viscous turbulent boundary layer, but their analysis of stability ignored
the effects of turbulent stresses. These modelling limitations are remedied in the present
study. The present work approaches the stability of the turbulent boundary layer
via the unsteady turbulent-averaged momentum equations. The principal turbulent
or Reynolds stress is modelled by the well-established mixing-length eddy-viscosity
formulation of van Driest (White 1991). The perturbations of the turbulent stress and
mean velocity fields are coupled via the turbulence model.

The stability eigenvalue problem for two-dimensional waves in turbulent boundary
layers on viscoelastic compliant layers, with Reynolds-stress modelling, is developed
in § 2. The governing equations for the flow and wall domains are discretized by
a Chebyshev-polynomials collocation procedure, and formulated as a linear matrix
eigenvalue problem in the complex frequency ω in § 3; following Yeo et al. (1996).
Absolute instabilities are associated with the intersection of certain causal pairs of
α–eigenvalues (α is the streamwise wavenumber); these are revealed as cusp points by
the mapping procedure of Kupfer, Bers & Ram (1987). The occurrence of slow waves
and fast waves as absolute and convective instabilities, respectively, is studied in § 5.
The instability of spanwise-periodic three-dimensional modes is briefly considered
in § 5.9.
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Figure 1. Boundary-layer flow over a compliant layer.

2. Theoretical formulation
One of the earliest attempts to apply the concept of stability to turbulent flows was

by Markus (1956). Markus postulated that the mean flow field of a turbulent shear
flow is determined by the conditions of marginal stability and maximum dissipation.
By discarding all nonlinear terms on the assumption that they would be stabilizing,
Markus arrived at an Orr–Sommerfeld (OS) stability equation for the mean velocity
field. Landahl (1967), on the other hand, retained the nonlinear wave terms and
treated them as source terms on the right-hand side of the OS equation to represent
the effects of turbulence. The homogeneous OS equation for the turbulent-mean flow
was found to contain only decaying modes, of which the lightly damped ones were
shown to affect turbulent correlations over large distances. Landahl was interested
in how these modes might be driven by the nonlinear effects of turbulence. Both
Markus and Landahl did not obtain a closed-form stability problem for the turbulent
mean flow, however, because the essential turbulent effects were either omitted or
independently specified.

A more systematic attempt at analysing turbulent shear flows from the stability
viewpoint was made by Hussain & Reynolds (1970) and Reynolds & Hussain (1972)
in the context of a theory for organized waves (coherent structures) in such flows.
They introduced the concept of a phase-based ensemble averaging to extract the
organized wave information from the flow, and applied an eddy-viscosity model
for the oscillatory (perturbation) Reynolds stresses to close the problem. A theory
of stability for turbulent layer over compliant surfaces is introduced in the present
paper. Turbulent closure is accomplished via mixing-length eddy-viscosity formulation
of principal Reynolds stress. The theory differs from that of Reynolds & Hussain in
some areas, which will be discussed subsequently.

The physical problem comprises two domains, as shown in figure 1: a semi-bounded
incompressible viscous flow region with a zero-pressure-gradient turbulent boundary
layer and a viscoelastic compliant layer on a rigid base. The standard Cartesian
coordinate frame has its positive x1-axis pointing in the streamwise direction and
x3-axis pointing vertically upwards. The flow and wall are assumed to be in an
initial state of equilibrium in the mean in which the mean flow and the compliant
surface spanning the (x1, x2)-plane at x3 = 0 are essentially steady (unperturbed)
except for small fluctuations associated with the background turbulence of the flow.
The mean flow over the surface is identical to that over a rigid surface in this state.
The linear stability of the boundary layer, the compliant wall and the interface to
small perturbations or changes of their mean fields is considered. Each domain is
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governed by its own physical equations. The perturbations in the two domains are
kinematically and dynamically coupled along the domain interface at x3 = 0.

2.1. Stability of two-dimensional turbulent boundary layers

The dynamics of an unsteady two-dimensional incompressible turbulent viscous
fluid is governed by the following turbulence-averaged equations of continuity and
momentum:

∂〈U1〉
∂x1

+
∂〈U3〉
∂x3

= 0, (1)

∂〈U1〉
∂t

+ 〈U1〉∂〈U1〉
∂x1

+ 〈U3〉∂〈U1〉
∂x3

= −1

ρ

∂〈P 〉
∂x1

+ ν∇2〈U1〉+
∂

∂x3

〈−u′1u′3〉, (2)

∂〈U3〉
∂t

+ 〈U1〉∂〈U3〉
∂x1

+ 〈U3〉∂〈U3〉
∂x3

= −1

ρ

∂〈P 〉
∂x3

+ ν∇2〈U3〉+
∂

∂x1

〈−u′1u′3〉, (3)

where 〈 〉 denotes a suitable ensemble-averaging operation. 〈U1, U3〉 and 〈P 〉 represent
the ensemble-averaged velocity and pressure fields, respectively. Only the dominant
component 〈−u′1u′3〉 of the Reynolds (turbulent) stress tensor has been retained in
equations (2) and (3).

The Reynolds stress tensor represents the total effects that turbulent fluctuations
have on the mean fields, for its presence distinguishes equations (2) and (3) from the
Navier–Stokes equations. The small-scale stochastic motions of turbulence are the
principal contributor to the production of turbulent shear stress in a wall shear layer
(Hinze 1975). The large-scale motions play an essential role in maintaining the self-
perpetuating cycles of turbulence, but only affect turbulent shear stress production
in an indirect manner. Equations (2) and (3) may thus be applied to events of
the turbulent-mean fields whose spatial and temporal scales are considerably larger
than the scales of turbulent motions that directly contribute to the Reynolds stress
terms. Indeed, the bulk of turbulence production in a turbulent boundary layer is
concentrated in a thin wall layer characterized by the inner length scale of ν/u∗
and timescale of ν/u2∗ (Tennekes & Lumley 1972); where ν and u∗ are the kinematic
viscosity of the fluid and the wall-friction velocity, respectively. These are significantly
smaller than the length scales and time scales of the unstable dynamical events that
we seek to study here, which are typically of the order of the gross boundary-layer
thickness δ and time scale δ/U∞, respectively, or larger. For a turbulent boundary

layer based on the 1
7
-power law, these characteristic turbulence scales are O(R

−11/12
δ )

and O(R
−5/6
δ ) relative to the length and time scales of the boundary layer, where

Rδ = δU∞/ν is the Reynolds number based on the boundary-layer thickness.
〈 〉 may be the phase-based ensemble-average of Hussain & Reynolds (1970); since

the emergence of a sinusoidal wave would be immediately recognizable as the growth
of an organized wave structure. A time-based average may also be applicable if
equations (2) and (3) are intended to model or detect the onset of events that lead to
a permanent or large time-scale departure of the flow from its original state. In this
case, the averaging period would, of course, have to be significantly longer than the
time scales of the random turbulent fluctuations that we wish to ignore. Experimental
evidence indicates that the onset of SD waves affects both the turbulence and mean
characteristics of the base flow.

The van Driest mixing-length eddy-viscosity approximation of 〈−u′1u′3〉 (see White
1991) is used to close the above equations. The model is well established and produces
results that accurately match experimental measurements for the flat-plate boundary
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layer. This suggests that the model adequately represents the physics of this relatively
simple turbulent flow. The model has also been employed extensively in the numerical
computation of non-separating two-dimensional turbulent boundary layers (Cebeci
& Bradshaw 1977). The more complex turbulent models available in the literature
(Speziale 1991) are generally intended to deal with a larger class of fluid flows.
They are not assured to give better results for the present relatively simple flow.
Accordingly, we have

〈−u′1u′3〉 = νt

(
∂〈U1〉
∂x3

+
∂〈U3〉
∂x1

)
, (4a)

where

νt = l2
∂〈U1〉
∂x3

, (4b)

is the eddy-viscosity coefficient. The absolute value function has been ignored because
∂〈U1〉/∂x3 > 0 for the flows considered in this paper. The mixing length l is prescribed
by the composite van Driest law:

l(x3) =

 kx3

[
1− exp

(
−x3

A

)]
for x3 6 xc3,

0.09δ for x3 > xc3,
(5)

where δ is the boundary-layer thickness. The von Kármán constant k and the
damping-length constant A are assigned their empirically established values of 0.41
and 26(ν/u∗), respectively. The term xc3 denotes the point at which the two expressions
for l(x3) have equal value.

Let (U1, U3), P and −u′1u′3 denote the mean velocity, pressure and Reynolds stress
fields of a steady turbulent boundary layer over a compliant layer. To investigate the
stability of the steady mean fields, we subject the mean fields to a small variation
(perturbation):

〈U1〉 = U1 + u1, 〈U3〉 = U3 + u3, 〈P 〉 = P + p, 〈−u′1u′3〉 = −u′1u′3 + τ,

where (u1, u3), p and τ denote the small perturbations or changes made to the mean
velocity, pressure and turbulent stress fields, respectively. We then seek to discover
how the altered mean fields will evolve in terms of the growth or decay of the applied
perturbation.

The perturbed fields are governed by equations (1) and (3). Substituting these
into the governing equations, eliminating the initial steady mean state and retaining
only terms that are first-order in the perturbation quantities yield a system of linear
partial differential equations in the perturbation quantities. By further invoking the
locally parallel-flow approximation for a leading-order stability analysis, we obtain
the following system of equations for the perturbation field quantities (u1, u3), p and τ:

∂u1

∂x1

+
∂u3

∂x3

= 0, (6)

∂u1

∂t
+U1

∂u1

∂x1

+ u3

∂U1

∂x3

= −1

ρ

∂p

∂x1

+ ν∇2u1 +
∂τ

∂x3

, (7)

∂u3

∂t
+U1

∂u3

∂x1

= −1

ρ

∂p

∂x3

+ ν∇2u3 +
∂τ

∂x1

. (8)

Only the U1 component of the mean velocity field and its x3-derivative are involved
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above. With the same linear and parallel-flow approximations, the perturbation com-
ponent of turbulent stress τ may be derived from (4) to be

τ = l2
∂U1

∂x3

(
2
∂u1

∂x3

+
∂u3

∂x1

)
. (9)

Equations (6)–(9) constitute a complete system of four equations for the four pertur-
bation quantities u1, u3, p and τ when the x1-velocity field U1 of the steady turbulent-
mean flow is prescribed. Depending on whether the perturbation fields die away or
amplify with time, we say the original mean fields are stable or unstable, respectively.

The governing equations (6)–(9) for the perturbation fields can be further simplified
by introducing the perturbation stream function Ψ and assuming the perturbation to
have the form of a sinusoidal travelling wave:

u1 =
∂Ψ

∂x3

, u3 = −∂Ψ
∂x1

, (10a, b)

Ψ (x1, x3, t) = ψ(x3) exp[i(αx1 − ωt)], (11)

where α and ω are the wavenumber and frequency of the wave, respectively. The
substitution of these into equations (6)–(9) and the elimination of the pressure terms
then result in the following equation:

(U1 − c)(ψ′′ − α2ψ)−U ′′1ψ = − 1

iαRδ∗
(ψ(4) − 2α2ψ′′ + α4ψ) +

χ

iα

4∑
j=0

Fjψ
(j), (12)

where c = ω/α is the phase speed of the perturbation wave. The prime is used here
and below to indicate an ordinary derivative with respect to x3. The coefficients Fj
are given by:

F0 = α2U ′′′1 l
2 + 4α2U ′′1 ll

′ + 2α2U ′1ll
′′ + 2α2U ′1l

′l′ + α4U ′1l
2, (13a)

F1 = 2α2U ′′1 l
2 +4α2U ′1ll

′, F2 = 2U ′′′1 l
2 +8U ′′1 ll

′+4U ′1ll
′′+4U ′1l

′l′+3α2U ′1l
2, (13b, c)

F3 = 4U ′′1 l
2 + 8U ′1ll

′, F4 = 2U ′1l
2. (13d, e)

The quantities of equation (12) have all been non-dimensionalized with respect to
the free-stream velocity U∞, fluid density ρ and displacement thickness δ∗ of the
boundary layer. Rδ∗ = U∞δ∗/ν denotes the Reynolds number based on displacement
thickness. The term χ is an artificial intermittency factor that is inserted to allow
the theory to be applied in the transitional region between the laminar and fully
turbulent parts of the boundary-layer flow. When the intermittency factor χ is set
to zero, we have the case of a laminar flow, and equation (12) then reduces to the
well-known Orr–Sommerfeld equation. The value of χ is set to 1.0 throughout this
study. Equation (12) is termed the turbulent Orr–Sommerfeld equation here for ease
of reference.

The perturbation of the mean flow induces fluctuations of the fluid stresses

σ
(f)
13 = σ̂

(f)
13 (x3) exp[i(αx1 − ωt)], σ

(f)
33 = σ̂

(f)
33 (x3) exp[i(αx1 − ωt)], (14a, b)

whose x3-dependent amplitude functions are given by

σ̂
(f)
13 =

1

Rδ∗

(
ψ′′ + α2ψ +

1

c
U ′′ψ

)
+ τ̂, (15a)

σ̂
(f)
33 =

i

αRδ∗
ψ′′′ −

(
c+

3iα

Rδ

)
ψ′ +U1ψ

′ −U ′1ψ − τ̂′

iα
, (15b)
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where

τ̂ = χU ′1l
2(2ψ′′ + α2ψ), τ̂′ = χ

3∑
j=0

Gjψ
(j), (16a, b)

and

G0 = α2(U ′′1 l
2 + 2U ′1ll

′), G1 = α2U ′1l
2, (17a, b)

G2 = 2U ′′1 l
2 + 4U ′1ll

′, G3 = 2U ′1l
2. (17c, d)

The σ(f)
11 component of fluctuating fluid stress is not listed because it is not required

in the subsequent development.
Reynolds & Hussain (1972) showed that the oscillation of the Reynolds stress,

r̃ij = 〈−u′iu′j〉 − (−u′iu′j), induced by an organized-wave perturbation of the turbulent
mean flow is of the same order of magnitude as the organized wave O(u) itself. The
same may also be observed in equation (9) of the present theory. They then closed the
stability problem by adopting an eddy-viscosity model for the oscillatory Reynolds
stress:

r̃ij = νt

(
∂ui

∂xj
+
∂uj

∂xi

)
, (18)

in which the eddy-viscosity coefficient νt was taken to be either a constant or prescribed
by a van Driest type model. Sen & Veeravalli (1998) took the development of Reynolds
& Hussain one step further by applying an anisotropic Reynolds-stress model of
Pope (1975) for the r̃ij . They found that the turbulent mean flow supports unstable
eigenmodes if a certain anisotropy function possesses large values in the vicinity of
the wall.

The present formulation differs from the theory of Reynolds & Hussain in one key
aspect. Whereas they had invoked turbulent closure at the level of the perturbation
Reynolds stress r̃ij , we have applied the same to the Reynolds stress 〈−u′1u′3〉 at the
level of the full momentum equations (2)–(3). The fluctuation or perturbation of the
Reynolds stress in our case then arises from the fluctuation of the mean velocity
field via the turbulence model for the Reynolds stress 〈−u′1u′3〉. The eddy-viscosity
coefficient νt was taken to be at most a prescribed function of x3 in Reynolds &
Hussain. In our case, the νt also fluctuates in sympathy with the perturbation of the
turbulent mean field in accordance with the adopted mixing-length mechanism (4b).
This results in an anisotropic perturbation Reynolds stress (9), which has a factor of
2 for ∂u1/∂x3, in contrast to the isotropic model of Reynolds & Hussain (equation
(18)). The νt is also a function of x3 in Sen & Veeravalli, although other anisotropic
terms are added to (18). In the present formulation, the turbulent mean flow and
modelled Reynolds stress field 〈−u′1u′3〉 are coupled by the conservation of mean
momentum via equations (2) and (3); any changes (perturbation) of the mean fields
are necessarily matched by corresponding changes (perturbation) of the Reynolds
stress field in a manner that is consistent with the adopted turbulence model. In
Hou (1996), a precursor of the present work, the steady turbulent mean velocity field
U1 was in fact also computed directly from the turbulence model by integrating a
boundary-layer version of the full momentum equations.

2.2. Turbulent mean flow

The steady turbulent-averaged or mean velocity profile of the fluid boundary layer is
governed by the choice of the turbulent stress model. The mean velocity distributionU1
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for the inner region of the boundary layer is given here by the integration of the van
Driest law of the wall (equation (5)). Extension to the outer or turbulent wake region
is accomplished by the addition of a wake function. The velocity distribution thus
has the form of:

U1(x3)

u∗
= u+

1 =

∫ x+
3

0

+
2

1 +
√

1 + 4k2(x+
3 )2[1− exp(−x+

3 /A
+)]2

dx+
3 +

Π

k
W
(x3

δ

)
,

(19)

where u+
1 and x+

3 = x3u∗/ν are the inner-wall variables. The friction velocity u∗ =

U∞
√
cf/2 is calculated from the local friction coefficient cf . For the flat-plate turbulent

boundary layer

cf =
0.455

ln2(0.06Rx)
, (20)

where Rx = U∞x1/ν is the x1-Reynolds number. The term Rx is related to the
displacement-thickness Reynolds number Rδ∗ by the relation Rδ∗ ∼= 0.018(Rx)

6/7. For
a value of A+ = 26, the integral in (19) accurately defines the velocity distribution
in the entire inner region of the boundary layer, comprising the sublayer, the buffer
and the overlap regions (White 1991). The wake parameter Π in (19) is in general a
function of x1. For flow with zero pressure gradient, Π is a constant equal to about
0.55 (Coles 1956). The wake function W (x3/δ) is given to a good approximation by
the following empirical fit:

W
(x3

δ

)
= 2 sin2 π

2

(x3

δ

)
, (21)

where δ is the thickness of the boundary layer. The approximate relation δ = 7.78δ∗ is
employed here to calculate δ when the displacement-thickness Reynolds number Rδ∗
is specified. Equation (19) defines a continuous velocity distribution U1 over the whole
boundary layer that is in very good agreement with experimental measurements. The
derivatives of U1 are obtained from U1 by numerical differentiation and interpolation.
The velocity distribution may alternatively be obtained by directly integrating the
steady turbulent boundary-layer equations.

2.3. Wave dynamics of a compliant wall

The compliant wall is represented here by a layer of homogeneous isotropic viscoelas-
tic material of uniform thickness. Associated with the harmonic wave perturbation
of the flow (equation (11)) is a corresponding two-dimensional travelling-wave per-
turbation of the compliant layer. The displacement vector field (η1, η3) of the wall
perturbation thus has the form of:

(η1, η3) = (η̂1, η̂3) exp[i(αx1 − ωt)], (22)

where η̂1 and η̂3 are the x3-dependent amplitude functions.
Harmonic wave propagation in a homogeneous isotropic viscoelastic material,

with zero body force, is governed by the following viscoelastic analogue of Navier’s
equation:

G(η̂′′1 − α2η̂1)− (K + G/3)(α2η̂1 − iαη̂3) + ρω2η̂1 = 0, (23a)

G(η̂′′3 − α2η̂3)− (K + G/3)(η̂′′3 + iαη̂′1) + ρω2η̂3 = 0, (23b)

where G and K are the shear and bulk moduli of the material, respectively. Viscoelastic
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material damping is modelled by a Kelvin–Voigt model for the shear modulus G. For
harmonic time variation, G may be written in the complex form of G = ρC2

t − iωd,
where Ct and d are the elastic shear wave speed and damping coefficient of the
material, respectively. The bulk modulus K has been assumed to be real, for simplicity,
so that there is no damping in dilatational deformation. This assumption is good for
nearly incompressible materials, which is the class of materials studied in this work.
The fluctuating components of the stress tensor in the wall are given by

σ
(w)
13 = σ̂

(w)
13 (x3) exp[i(αx1 − ωt)], σ

(w)
33 = σ̂

(w)
33 (x3) exp[i(αx1 − ωt)], (24a, b)

where

σ̂
(w)
13 = G(η̂′1 + iαη̂3), σ̂

(w)
33 = 2Gη̂′3 + (K + 1

3
G)(iαη̂1 + η̂′3). (25a, b)

2.4. Fluid–wall interaction and the eigenvalue problem

The dynamical interaction of flow and the compliant wall is governed by the continuity
of velocity and traction at the interface, in its displaced position. These are linearized
by Taylor’s expansion to apply at the mean interface at x3 = 0:
(i) the continuity of velocity,

ψ′ = −U ′1η̂3 − iωη̂1, ψ =
ω

α
η̂3, (26a, b)

(ii) the continuity of traction,

σ̂
(f)
13 = σ̂

(w)
13 , σ̂

(f)
33 = σ̂

(w)
33 , (27a, b)

where σ̂(f)
13 , σ̂(f)

33 , σ̂(w)
13 and σ̂(w)

33 are the stresses of the flow and compliant wall, as given
by (15) and (25), duly evaluated at x3 = 0. The perturbation stream function ψ and
the wall displacement vector (η1, η3) are also subject to the following conditions:

ψ → 0, ψ′ → 0 as x3 →∞, (28)

which signifies that the flow perturbation vanishes to zero in the far field; and

η̂1(−h) = η̂3(−h) = 0, (29)

for the perfect adhesion of the compliant layer, at its lower face at x3 = −h, to the
rigid base.

The governing equations for flow perturbation (equation (12)) and wall perturbation
(equation (23)), the interface conditions (equations (26) and (27)) and the boundary
conditions (equations (28) and (29)) form a closed system of homogeneous equations
that constitutes a stability eigenvalue problem

D(α, ω, Rδ∗) = 0. (30)

The dependence on wall parameters in (30) has been suppressed for notational brevity.

3. Numerical implementation
The stability problem is transformed into a linear matrix eigenvalue problem in the

complex frequency ω by a collocation procedure, whereby the perturbation eigen-
functions of the flow ψ and wall (η̂1, η̂3) are approximated by Chebyshev polynomial
series of Nth and Mth order, respectively:

ψ(x3) =

M∑
j=0

ajTj[ξ(x3)], (31)
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η̂1(x3) =

N∑
j=0

bjTj[ζ(x3)], η̂3(x3) =

N∑
j=0

cjTj[ζ(x3)], (32a, b)

with complex coefficients aj , bj and cj . ξ(x3) and ζ(x3) are the transformation func-
tions:

ξ =
x3 − 1

x3 + 1
, ζ =

2x3

h
+ 1, (33)

that map the semi-infinite fluid domain [0,∞) and the wall domain [−h, 0], respectively,
onto the domain of definition [−1, 1] of the Chebyshev polynomials.

The substitution of (31) and (32) into the corresponding governing equations,
interface conditions and boundary conditions, and their evaluation at the collocation
points then yield a matrix eigenvalue equation of the form:

[A− ωB](a, b, c, ωb, ωc)T = 0, (34)

where a = (a0, a1, . . . , aM), b = (b0, b1, . . . , bN) and c = (c0, c1, . . . , cN). The ωb and ωc
are auxiliary vectors introduced to linearize the quadratic occurrences of the complex
frequency ω in the wall equations. Det[A − ωB] = 0 yields a numerical equivalent
of the dispersion relation (30). For prescribed Reynolds number Rδ , wavenumber δ
and wall properties, all the temporal eigenvalues ω of (34) may be obtained using
the QZ algorithm. Unlike traditional shooting methods, no guess values are required.
The numbers M and N are typically 50–60 and 15–20, respectively. These numbers
are frequently checked and increased if necessary to ensure adequate convergence of
the eigenvalues.

4. Absolute and convective instabilities
The initial-value space–time response of an open system subjected to a point

perturbation at x1 = 0 is described by the Green’s function:

G(x1, t) =

∫
L

dω

2π
I(x1, ω) exp(−iωt), (35)

where

I(x1, ω) =

∫
F

dα

2π
D−1(α, ω) exp(iαx1), (36)

and D(α, ω) denotes the dispersion function in (30). The contour F of the Fourier
integral is defined along the real axis of the α-plane, while the Laplace contour L
is placed above all the singularities of the integral I(x1, ω) in the upper ω-plane to
satisfy the causal requirement that there is null response prior to an initial time t = 0.

The existence of instability, which affects the long-term or asymptotic-time be-
haviour of the system, is abstracted by deforming the contour L in a continuous
manner onto the real ω-axis whilst maintaining the analyticity of the response func-
tion. An absolute instability mode is revealed if this process is prevented by the
occurrence of a branch-pole singularity in I(x1, ω); the latter is caused by the co-
alescence of two or more α-eigenvalues (α-roots of the dispersion relation) that had
originated from different sides (upstream and downstream sides of source) of the
Fourier contour F . The perturbation associated with an absolute instability grows in
an expanding neighbourhood of the initiating source, and is moreover self-sustaining
when excited. It also has zero group velocity, so that an incipient absolute instability
exhibits a stationary or non-travelling appearance.
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If there is no absolute instability, the system may still be convectively unstable
if one or more parts of the contour F have to be deformed off the real α-axis to
preserve the analyticity of I(x1, ω) when the contour L is fully accommodated along
the real ω-axis. An unstable convective mode grows in size as it propagates away
from the initiating source. At any given spatial point, the perturbation dies away
with time unless otherwise maintained by the source. From the above, it is clear that
absolute instability is a highly devastating form of instability, whose growth would be
eventually equilibrated by nonlinear effects, whereas a convective instability is largely
a driven mode. A fuller account of the theory is given by Bers (1983).

The eigenmodes of absolute and convective instabilities may be found from a careful
analysis of the dispersion relation (equation (30)), though the process is usually highly
laborious. This task is made more difficult when the dispersion relation is not explicitly
given, but is only implicitly defined by a set of differential equations and boundary
conditions, as in the present problem. A mapping procedure devised by Kupfer et al.
(1987) is used in the present study to locate the branch-point singularities associated
with absolute instability. The method exploits the period-doubling characteristics of
the α 7→ ω dispersion map in the vicinity of the intersection point α0 of two α-roots.
The map transforms a smooth contour passing through α0 in the α-plane into a
contour in the ω-plane with a cusp at the image point ω0. When (ω0)i > 0, a possible
absolute instability mode is indicated. The causality of a mode is checked by drawing
a straight ray from the cusp point ω0 vertically upwards and observing the number
of times this ray intersects the image contour of the αr-axis (αi = 0) in the ω-plane.
An odd number of intersections indicates a causal mode. Convective instabilities,
on the other hand, are given by causal spatially growing (upstream or downstream)
eigenmodes for real eigenfrequencies. For the downstream modes in particular, these
are the eigenstates with αi < 0 lying along the real axis of the ω-plane. The causality
of these modes may be checked by the same vertical-ray criterion.

5. Results and discussion
5.1. Temporal eigenvalue spectra of rigid and compliant surfaces

The matrix eigenvalue problem (equation (34)) for a zero-pressure-gradient turbulent
boundary layer on a rigid surface was solved for an extensive range of wavenumber α
and Reynolds number Rδ∗ . The temporal spectra were found to comprise only damped
modes. This is not unexpected, as similar observations had been made by Landahl
(1967), Markus (1956) and others. (More recently, Sen & Veeravalli (1998) reported
the presence of unstable eigenmodes when they applied a perturbation Reynolds-
stress model with strong anisotropy at the rigid wall. What this may imply for the
equilibrium state of the turbulent boundary layer is unclear.) The four least-damped
discrete eigenmodes for α ranging from 0.1 to 0.9 and Rδ∗ = 1000 are depicted in
figure 2. The two least-damped modes for α = 0.1, 0.5, 0.9 and Rδ∗ = 1000, 3000 are
also given in table 1. In all the above cases, the least-damped modes have real phase
speeds cr close to 0.8.

The discrete temporal eigenvalues of the same flow on a compliant layer are given
in figure 3 for α = 0.7 and Rδ∗ = 1000. The compliant layer has the following
properties: shear wave speed Ct = 0.35U∞, thickness h(L) = 1.0 and a low material
damping coefficient. The superscript (L) indicates that the quantity has been specified
with respect to a fixed length L (equal to the displacement thickness of the boundary
layer at Rδ∗ = 2 × 104). The corresponding rigid-wall modes are also marked in
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Mode 1 Mode 2

Rδ α cr ci cr ci

1000 0.1 0.8208 −0.0422 0.7603 −0.1547
1000 0.5 0.8372 −0.0474 0.6450 −0.1878
1000 0.9 0.8287 −0.0442 0.5791 −0.2154
3000 0.1 0.8582 −0.0837 0.0779 −0.3104
3000 0.5 0.7698 −0.0562 0.6284 −0.4316
3000 0.9 0.8433 −0.0773 0.6020 −0.1467

Table 1. The two least-damped temporal modes of a turbulent boundary layer on a rigid flat-plate
at the Reynolds numbers Rδ∗ = 1000, 3000 and wavenumbers α = 0.1, 0.5, 0.9.
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–0.3

–0.6
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Mode 2
Mode 1

cr

ci

Figure 2. The temporal eigenmodes of a turbulent boundary layer on a rigid wall.
Rδ∗ = 1000 and ◦, α = 0.1; �, α = 0.3; 4, α = 0.5; +, α = 0.7; ×, α = 0.9.
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Figure 3. The temporal eigenmodes of a turbulent boundary layer on a compliant layer with
h(L) = 1.0, Ct = 0.35U∞, K = 500 and d(L) = 0.0049 at Rδ∗ = 1000 and α = 0.7. Compliant wall:◦, flow modes; •, wall modes. Rigid wall: ×, flow modes. M = 60, N = 20.

figure 3 for comparison. The compliant-wall eigenmodes may be divided into two
fairly distinct groups. The first group consists (open circular dots) of eigenmodes
that are continuously connected to the rigid-wall eigenmodes. They are hence termed
the flow modes. They remain damped despite the significant compliance of the layer.
The eigenmodes of the second group are marked by full circular dots. All, but one,
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are distributed along a fairly well-defined line. These modes are directly allied to the
compliance of the layer and are termed the wall modes. One unstable wall mode is
discerned in figure 3. Eigenvalues from the present study are found to compare well
with those of Hou (1996).

5.2. Onset of convective and absolute instabilities

The preceding section shows that the flat-plate turbulent boundary layer may be
unstable on a sufficiently compliant surface. We shall now examine the occurrence
of instabilities on a compliant layer from the standpoint of the time-asymptotic
spatio-temporal theory. Following Kupfer et al., the identification of convective and
absolute instabilities is based on the map of the αi-contours in the complex ω-plane.
The αi-contours for a series of compliant layers with different non-dimensional elastic
shear-wave speeds Ct/U∞ are depicted in figure 4. The displayed contours belong
to that of the most unstable or least stable branch (largest ωi) of ω-eigenmodes.
The αi = 0 contours in these figures represent the temporal eigenmodes of course.
For a relatively stiff compliant layer (high Ct/U∞), the αi = 0 contour resides below
the real-ω axis, i.e. ωi < 0 for all temporal modes, and the flow–wall system is
temporally stable. As the Ct/U∞ is reduced, leading to a more compliant layer, the
αi = 0 contour rises in the ω-plane, until eventually a part of it goes above the real
ω-axis in figure 4 (a). The latter indicates the onset of unstable temporal modes. The
resultant instability is convective in nature; the eigenmodes along the real ω-axis
between points a and b in figure 4 (a) represent unstable harmonic waves that amplify
downstream (αi < 0) of its perturbation source.

A cusp point is formed by the αi-contours near a value of αi ≈ −0.13 in the
lower-half ω-plane in figure 4 (a). The cusp point is created by the coalescence
of two α-eigenvalues according to the spatio-temporal theory. As the Ct/U∞ is
further reduced, see figures 4 (b) and 4 (c), the flow–wall system becomes convectively
unstable to an increasing range of real ω-eigenmodes. Simultaneously, the cusp point
advances into the upper-half ω-plane, figure 4 (c), crossing the real ω-axis at a value
of Ct/U∞ ≈ 0.295. In the upper-half ω-plane (ωi > 0) the cusp point denotes an
absolute instability mode if causality is satisfied. The causal condition is clearly met
since a vertical line drawn upwards from the cusp point intersects the αi = 0 contour
only once. Thus, the flat-plate turbulent boundary layer on a compliant wall may
be susceptible to both convective and absolute instabilities. Convective instability
will generally precede absolute instability because the latter necessarily involves the
coalescence of an unstable convective mode with an evanescent mode.

Figure 5 illustrates the coalescence of the α-roots that is responsible for the absolute
instability mode in figure 4 (c). Sen & Arora (1988) and Yeo et al. (1996) have found
similar coalescence to occur in Blasius boundary layer on soft compliant surfaces.
Arising from the coalescence of a Class A and a Class B mode, the coalesced mode
is expected to be Class C (Carpenter 1990) and to be mildly stabilized by damping.
The coalesced mode indeed exhibited Class C behaviour in the inviscid study of Yeo
et al. (1999). However, the coalesced modes that we have found here and in Yeo et al.
(1996) frequently exhibit a Class A energy behaviour. This is especially so with the
thicker layers at the lower levels of damping. For thin layers, all three types of energy
behaviour may be exhibited by the coalesced mode. It may be pertinent to note that
Benjamin’s energy classification and equivalent classifications developed by others
have been formulated primarily for conservative or nearly conservative systems, and
may not be strictly valid for a viscous flow regime. The classification is therefore used
here mainly in their phenomenological context to describe the effects of damping.
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Figure 4. The αi-contours in the complex ω-plane for compliant layers with h(L) = 0.4, K = 500,
d(L) = 0.02 and Rδ∗ = 1000. (a) U∞/Ct = 2.200, (b) U∞/Ct = 3.279, (c) U∞/Ct = 3.509. The onset
velocity U(abs)∞ /Ct = 3.392.

5.3. Effects of other parameters on the onset of convective and absolute instabilities

In the preceding section, we saw how a reduction in the stiffness of the compliant
material had resulted in the successive occurrence of convective and absolute instabil-
ities. The effects of other parameters, such as the layer thickness h(L), the viscoelastic
damping coefficient d(L) of the material and the Reynolds number Rδ∗ , on the onset
of the instabilities are examined below.

Figure 6 depicts the onset velocities (U∞/Ct)onset of convective and absolute insta-
bilities for two compliant layers, at fixed values of Rδ∗ , as a function of the thickness
h(L). The compliance of the surface generally increases with the thickness of the layer.
From the results of the preceding section, one may thus expect the flow to become
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Figure 5. Root coalescence or intersection in the α-plane produced by the lowering of the Laplace
contour in the ω-plane. The intersection point at α = (0.3175,−0.1260) corresponds to the cusp
point in figure 4(c).
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Figure 6. Onset velocities for convective and absolute instabilities on compliant layers. Lightly
damped layer with d(L) = 0.0049 and Rδ∗ = 1100: - - -, convective modes; q, absolute modes.
Highly damped layer with d(L) = 0.5, Rδ∗ = 1000: ——, convective modes; ◦, absolute modes.

more unstable as h(L) is increased. This is indeed the case, and the effect is manifest
in the monotonically decreasing trend of the onset velocity curves; which decrease
quite steeply at small h(L) but tend asymptotically to nearly constant values at larger
h(L). The (U∞/Ct)onset of absolute instability is distinctly higher than the (U∞/Ct)onset
of convective instability for the lightly damped layer with d(L) = 0.0049. This is in
line with the expectation that the onset of absolute instability is usually preceded by
a convective instability. The situation is changed greatly, however, when the layer is
imbued with a much higher level of material damping, d(L) = 0.5. For this highly
damped layer, the (U∞/Ct)onset of the two instabilities are nearly identical over the
entire range of h(L).

The effects of material or wall damping on the onset velocities of the two instabilities
are more clearly depicted in figure 7 for a thicker layer with h(L) = 1.0 at two values
of Rδ = 1200 and 2000, and d(L) ranging from 0.005 to 0.5. The (U∞/Ct)onset for
absolute instability starts at about 3.0 for a nearly elastic layer at Rδ∗ = 1200. It
decreases monotonically with increase in d(L); decreasing fairly rapidly at first and
then more gradually, and tending eventually towards a constant value at large d(L).
The energy behaviour is thus Class A at lower d(L), and tending to Class C at
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Figure 7. Onset velocities for convective and absolute instabilities on compliant layers with
thickness h(L) = 1.0. ——, Rδ∗ = 1200; - - -, Rδ∗ = 2000.
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Figure 8. Onset velocities for convective and absolute instabilities as functions of Reynolds number
Rδ∗ . h(L) = 0.1 and d(L) = 0.001: - - -, convective modes. h(L) = 0.1 and d(L) = 0.3: — . —, convective
and absolute modes. h(L) = 1.0 and d(L) = 0.5: ——, convective and absolute modes.

large d(L). The onset velocity for convective instability, on the other hand, starts off at
a significantly lower value of about 1.7, but its value rises fairly rapidly as damping
is increased. This is indicative of Class B energy behaviour. It may be supposed that
the convective instability of the turbulent boundary layer on a compliant layer is
akin to the TWF (a Class B mode) under a laminar boundary layer. The decreasing
and increasing (U∞/Ct)onset values of the two instabilities cause their onset velocity
curves to converge eventually at large values of d(L), with the convective curve lying
just below the bounding absolute instability curve at large d(L). The converging curves
of convective and absolute instabilities taper forwards as a single curve towards a
constant value at very large d(L). The same behavioural trend is repeated at the larger
Rδ∗ of 2000.

The stability of the flow–wall system also changes with the growth of the boundary
layer in the stream direction. Figure 8 shows the variation of the (U∞/Ct)onset of the
instabilities with the Reynolds number Rδ∗ of the boundary layer. The (U∞/Ct)onset for
both instabilities are seen to increase with Rδ∗ , with the rise becoming more gradual
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at high Rδ∗ (computation carried out to Rδ∗ = 104). This means that the instabilities
will show a tendency to occur first at the upstream end of a compliant layer and to
extend downstream as the compliant layer becomes softer, or as U∞ is increased. The
(U∞/Ct)onset curves for the two instabilities are again almost identical for the highly
damped layer with d(L) = 0.5.

The above suggests that convective instability, with its lower (U∞/Ct)onset, will be
the dominant mode of incipient instability for a mildly damped compliant layer. As
wall damping becomes large, the incipient (unstable) convective mode will merge or
coalesce with an upstream (of source) evanescent mode to form an absolute mode of
instability at a marginally higher onset velocity. The onset velocity difference between
the incipient convective instability and the follow-on absolute instability is very small
at high damping. Since absolute instability is by far the stronger mode of instability,
it will quickly grow to overwhelm any signs of a preceding convective instability. The
incipient instability of a zero-pressure-gradient turbulent boundary layer on highly
damped viscoelastic layers is hence expected to be absolute in character. This is
reminiscent of a similar result for potential flow on compliant surfaces with non-zero
damping in Yeo et al. (1999).

5.4. Relation to experimental observations of surface waves

Highly damped viscoelastic layers were employed in the experiments of Hansen et
al. (1980) and Gad-el-Hak et al. (1984). Gad-el-Hak et al. quoted a relaxation time
constant of the order of 1 s for their walls, which were materially similar to those of
Hansen et al. For these highly damped layers, Hansen et al. and Gad-el-Hak et al.
observed a series of large-amplitude spanwise-aligned waves when the flow velocity
U∞ exceeded certain threshold values, that were dependent on the properties of the
layers. These spanwise waves traversed the surface of the compliant layers at speeds
c < 0.05U∞. The wave speeds are in fact < 0.01U∞ at the onset of the waves according
to the data given in table 1 of Gad-el-Hak et al., and < 0.03U∞ for U∞ exceeding
8–20% of the onset velocity according to table 3 of Hansen et al. Their large-
amplitude and nearly stationary appearance account for the term static divergence
(SD) being applied to these waves, which are also called slow waves here. The SD or
slow waves are clearly related to the absolute instability predicted for highly damped
layers in the last section. The observations of Gad-el-Hak et al. on the birth or initial
development of the SD waves are particularly enlightening in this regard. They noted
that the appearance of the SD waves was always preceded by a highly transient
small-amplitude wavetrain. The evolution of these incipient wavetrains into the SD
waves occurred so rapidly that they could not be captured on film. It is plausible
that the observed small-amplitude transient waves actually represented the fleeting
presence of a precedent convective instability, which was quickly transformed into
an absolute instability by mode coalescence at a marginally higher onset velocity, as
suggested by the results of figure 7. Gad-el-Hak et al. also noted that the SD waves
possessed a highly asymmetrical non-sinusoidal waveform with relatively sharp peaks
and shallow troughs in between. Absolute instability modes are also likely to have
a non-sinusoidal waveform because their wave profiles contain modal contributions
from a continuous spectrum. The above discussion shows that the SD waves on highly
damped viscoelastic compliant layers are most probably the outcome of an absolute
instability.

For nearly elastic compliant layers, Gad-el-Hak (1986) observed instead the oc-
currence of fairly regular small-amplitude wavetrains. These waves are roughly sym-
metrical in their profile, if not quite sinusoidal. They travelled at speeds of up to
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0.5U∞ and are termed the fast waves here. They are clearly linked to the convective
modes of instability that have been predicted for lightly damped surfaces in the last
section.

Nonlinear effects are undoubtedly important in rendering the final form of the
observed (post-instability) SD waves. This was demonstrated by Lucey et al. (1997)
in their numerical simulation of potential flow over highly damped compliant plate
panels, where the equilibrated waves exhibit the observed peak–trough feature of
the SD waves. Nonlinearity is also evident in the non-sinusoidal waveform of the
fast waves. Where it is strong, nonlinearity may also induce modification of the
post-instability base flow. There is indeed evidence of this in the enhanced levels of
turbulence seen over the SD waves. Given its linear character, it may therefore be
expected that not all features of the observed waves will be reproduced faithfully
by the present theoretical model. However, the present analyses may yet be effective
in capturing the onset conditions for these waves, since the amplitude of the waves
would be small in their unstable incipient state. The primary focus of the present
paper is hence on predicting the onset conditions for these waves.

5.5. Onset of SD or slow waves on viscoelastic layers

Hansen et al. (1980) distinguished three types of SD waves in their experiments. As
the flow velocity U∞ was increased, they observed that spanwise surface ridges first
began to appear near the leading edge of the compliant layer (Type I SD waves).
The waves became more evident and extended further downstream from the leading
edge when U∞ was increased above their initial onset velocity. The Type I waves
were followed by Type II and Type III SD waves at a slightly higher U∞; the
latter two waves occurred almost simultaneously and had onset U∞ that were on
the average 17.5% above those of the Type I waves. The Type II SD waves were
slightly crescent-shaped ridges that occurred at the side edges of the compliant layers,
whereas the Type III SD waves were found in the central region of the compliant
surface, seemingly independent of edge conditions. The Type I waves appeared to be
triggered by small surface irregularities at the leading edge of the compliant layer.
By ensuring a smooth seam there between the layer and the mounting plate in one
of their experiments, Hansen et al. were able to suppress the waves. With carefully
fabricated joints between the compliant layers and the plate, Gad-el-Hak et al. had
observed only the Type III waves. The sequential appearance of the Type I and Type
III waves with increase in the flow velocity U∞, first near the leading edge and then
in the central portion of the compliant surface, respectively, is qualitatively consistent
with the theoretical prediction of a slowly increasing (U∞/Ct)onset with Rδ∗ in figure 8.

The onset velocities predicted by the present theoretical model are compared against
the experimental results of Hansen et al. and Gad-el-Hak et al. in figure 9. Since
the theoretical onset velocity (U∞/Ct)onset is not constant, but increases slowly over
the streamwise length of a compliant layer, the experimental onset velocities for the
Type I waves are thus compared against the theoretical (U∞/Ct)onset at the leading
edge (Reynolds number Rsδ∗) of the compliant layer. The Type III wave results of
Hansen et al. and Gad-el-Hak et al., on the other hand, are compared against the
theoretical (U∞/Ct)onset at the middle (Reynolds number Rmδ∗) and the downstream
end (Reynolds number Reδ∗) of the compliant layer. The theoretical (U∞/Ct)onset at
Reδ∗ represents a situation in which the compliant surface is absolutely unstable at
all points, and may be regarded as yielding an approximate condition for the onset
of a global absolute instability over the whole compliant surface. Theoretical onset
velocity curves at the fixed Rδ∗ of 500 and 3000, which span the estimated range of
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Figure 9. Onset velocities for slow or SD waves on damped compliant layers. Experimental results
of Hansen et al. (1980): +, Type I; ×, Type III. Experimental results of Gad-el-Hak et al. (1984):◦, isotropic; 4, non-isotropic. Theoretical predictions for compliant layer with d(L) = 0.5: q, at
start of layer (Rsδ∗ ); j , at mid-layer (Rmδ∗ ); r, at end-layer (Reδ∗ ). - - -, theoretical onset velocity
curves at fixed Rδ∗ . •, selected data of Gad-el-Hak et al. based on Rmδ∗ = 2000.

the experiments, are also depicted in figure 9. All the theoretical results in figure 9 are
applicable to viscoelastic layers with a high damping coefficient of d(L) = 0.5; which
yields relaxation times τR = d/(ρC2

t ) of 1–2.5 s for the layers tested by Gad-el-Hak et
al. Hansen et al. did not give details about the damping quality of their walls. Their
walls were stiffer owing to a higher resin to plasticizer content of about 7% compared
to 3% for Gad-el-Hak et al. Recalling figure 7, we note that at this high level of
damping, any variation in the damping coefficient would only have a relatively small
effect on the onset velocity results.

The experimental and theoretical results are in very good agreement for the Type I
and Type III waves of Hansen et al. The deviations are less than 8% for all except
the Type III waves of their experiment 5, for which the predicted value is about 17%
lower than the measured value. Nearly half the results show differences of less than
4%. Experiment 5 is the only experiment of their series that used a smaller plate.
The principal results of Gad-el-Hak et al., marked by open circles, are derived from
their table 1. The agreement of their results with the present theoretical predictions
is fairly good in both magnitude and trend, if not quite as sharp as that of Hansen
et al.’s, Gad-el-Hak et al.’s results typically lie above the predicted onset velocities,
and span a region where the decrease of onset velocity with thickness h(L) is fairly
rapid. The result for a non-isotropic layer (open triangle), also from their table 1, is
given in figure 9. For this case, the average thickness of the layer (which was mounted
on a streamwise-grooved baseplate) has been used; based on their remark that its
onset velocity was approximately the same as that of an isotropic coating of the
same average thickness. The non-isotropic layer result is surprisingly in quite good
agreement with the present isotropic-layer predictions, lying between the predicted
onset velocities at the middle and downstream end of the layer. The onset velocities



Turbulent flow over a compliant surface 161

for two very thin layers (full circles) are obtained from figure 6 of Gad-el-Hak et al.
As insufficient details are given for these results in their paper, a midlayer Reynolds
number of Rmδ∗ = 2000 has been assumed in order to fix the non-dimensional thickness
h(L) of the layers. These results are also well placed with respect to the theoretical
onset velocity curves. We note that h(L) ∝ Rδ∗ , so that the choice of a different
Rmδ∗ within the experimental range would only cause a small horizontal shift of the
data points without affecting their overall agreement with the theoretical curves. The
present theoretical onset velocity curves also follow closely the overall trend of the
experimental results of Hansen et al. and Gad-el-Hak et al. The modified potential
flow model (Yeo et al. 1999) merely predicted a constant onset velocity of about 3.0
irrespective of layer thickness.

The present local stability model does not take into account the boundaries of a
finite size layer. Instability waves may be inhibited by the constraining effect of a
fixed edge. Contrarily, the abrupt change of properties at an edge may be a source
of reflected waves that interact with the primary instability wave to give rise to an
absolute instability. Such a mechanism will be particularly important for relatively
short and lightly damped compliant surfaces, as in Lucey & Carpenter (1992). Surface
flaws at an edge may also act as an initiating source for unstable surface waves. The
Type III wave results of Hansen et al. have agreed very well with the present
theoretical predictions when the waves were preceded by the Type I waves. In the
absence of the latter, as in experiment 5 of Hansen et al. and in Gad-el-Hak et
al., the observed (U∞/Ct)onset were some 16–20% above the predicted values. This
suggests that the Type I waves might have acted as a trigger for the downstream
Type III waves. According to Gad-el-Hak (2001, personal communication), the very
first appearance of the Type III waves in Gad-el-Hak et al. (where Type I waves were
absent) was somewhat intermittent and a small excess of flow velocity was generally
required to establish a series of sufficiently well-defined waves whose properties
could be measured. This may partially explain the higher values of the experimental
(U∞/Ct)onset compared to the theoretical ones for these cases in figure 9. For Gad-el-
Hak et al., the discrete intervals of the test velocities (see their table 1) may also be a
contributing factor to the higher recorded (U∞/Ct)onset.

5.6. Onset of fast waves on elastic layers

The onset velocities of the fast waves from Gad-el-Hak (1986) are compared against
the theoretical predictions for nearly elastic layers (d(L) = 0.001) in figure 10. The
experimental results (from figures 3 and 7 of his paper) are compared against the
theoretical values at the mid-point and downstream end of the layer. Onset velocity
curves at fixed values of Rδ∗ spanning the experimental range are also depicted to
mark the overall theoretical trend. The agreement between the experimental and
theoretical onset velocities is fairly good in both magnitude and trend. Indeed, the
theoretical results are roughly coincidental with the mean trend of the experimental
data points. The experimental data points marked by crosses in figure 10 pertain to
cases whose exact U∞ could not be ascertained from Gad-el-Hak. Their h(L) values
have been estimated here by assuming a mid-layer Reynolds number of Rmδ∗ = 2000.
These data points also fall in quite well with the onset velocity curves; the overall
agreement is not affected by the use of a different Rmδ∗ .

5.7. Wavelengths and phase speeds

Figure 11 gives the predicted wavelengths of the onset SD modes as a function
of layer thickness h(L). The small difference between the curves at the Rδ∗ of 500
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Figure 10. Onset velocities for fast waves on elastic compliant layer. ◦, Experimental results of
Gad-el-Hak (1986). Theoretical predictions for compliant layers with d(L) = 0.001: j , at mid-layer
(Rmδ∗ ); r, at end-layer (Reδ∗ ). - - -, theoretical onset velocity curves at fixed Rδ∗ . ×, selected data of
Gad-el-Hak based on Rmδ∗ = 2000.

and 2500 implies that the wavelength λ increases only very gradually over the
length of compliant layers. This is in broad agreement with the experiments. The
asymptotic trend of the λ/h curves indicates that λ also scales approximately with
the thickness h for the thicker layers. This reinforces the point that the SD is indeed
a wall mode, as opposed to a flow mode. The Type I SD waves of Hansen et al.
have λ (estimated from the figures in their paper) that are slightly larger than the
theoretical values. The onset λ/h for the SD waves (Type III) of Gad-el-Hak et al.
are typically 1.8–2.2 times the theoretical values. Their result for the non-isotropic
layer is surprisingly close to the predicted value however. At high d(L), the incipient
convective modes that part take in the coalescence leading to absolute instability
typically have phase speeds cr/U∞ ≈ 0, see figure 12. This is in agreement with the
experiments. This and the convergence of the instabilities suggest that on a highly
damped wall, absolute instability and convective instability with cr/U∞ ≈ 0 are
practically synonymous.

The λ/h data for the fast waves in figure 11 were deduced from figure 6 of Gad-el-
Hak by extrapolation to onset velocities obtained from his figure 7. The experimental
λ/h are up to 50% larger than the theoretical values, with good agreement on one
data point. The phase speed data of Gad-el-Hak are compared against the theoretical
predictions in figure 12. Only values that pertain to the smallest U∞ for a given layer
are selected because these represent conditions that were closest to the onset of the
waves. The experimental cr/U∞ are generally lower than the theoretical ones based
on d(L) of 0.001. Given that nonlinear effects, including the possibility of a modified
post-instability base flow, are present in the observed SD and fast waves, some of
the above noted disparities between the measured properties of the waves and the
present linear stability predictions are not unexpected.
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Figure 11. Wavelength to thickness ratio. SD or slow waves: Gad-el-Hak et al., ◦, isotropic; •,
non-isotropic; Hansen et al., Type I; q, Type III. Fast waves: 4, Gad-el-Hak. Theoretical
curves for highly-damped layers d(L) = 0.5 (upper set, absolute modes) and nearly-elastic d(L) = 0.001
(lower set, convective modes): ——, Rδ∗ = 500; - - -, Rδ∗ = 2500.
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Figure 12. Phase speed of slow and fast waves. Fast waves, q, Gad-el-Hak. Slow waves, ◦, Gad-
el-Hak et al. Theoretical curves: ——, fast waves Rδ∗ = 1000 and d(L) = 0.001; - - -, slow waves
Rδ∗ = 1000 and d(L) = 0.5.

5.8. Occurrence of SD waves under laminar flow condition

All the observed occurrences of SD or slow waves on viscoelastic layers referred to
in this paper had taken place under turbulent flow conditions. (Hansen & Hunston
(1983) did observe SD-type surface waves under a laminar rotating-disk flow. The
latter flow is quite different dynamically from the flow considered in the present
study). Gad-el-Hak et al. did not find any SD waves when they subjected their test
surfaces to laminar flow with U∞ that were twice the onset values of the waves
under turbulent flow conditions. SD waves were found, however, under an artificially
induced turbulent wedge in a laminar boundary layer. This demonstrates the readiness
of SD waves to form under turbulent flow conditions.

Assuming the SD waves to be associated with the occurrence of absolute instability,



164 K. S. Yeo, H. Z. Zhao and B. C. Khoo

12

9

6

3

0 0.1 0.2 0.3 0.4

Absolute

Convective

Absolute

Convective

d (L)

U∞
Ct

Figure 13. Onset velocities for convective and absolute instabilities in laminar (Blasius) boundary
layer over compliant layers. - - -, for thickness h(L) = 5.0 and Rδ∗ = 3000; ——, for thickness
h(L) = 0.6 and Rδ∗ = 2000.

figure 13 depicts the onset velocities for absolute and convective instabilities in
a Blasius boundary layer on two compliant layers as a function of the damping
coefficient d(L). The absolute and convective curves for the flow exhibit the same Class
A/C and Class B behaviour of the two instabilities as they did under a turbulent
boundary layer. However, the absolute and convective curves do not converge as they
have done for a turbulent boundary layer in figure 7, and remain distinctly apart
even at very high d(L). For the thick layer, h(L) = 5, the absolute and convective curves
tend to values of 6 and 5, respectively, at large d(L). The thinner layer, h(L) = 0.6,
has a large onset velocity for absolute instability of about 10 at large d(L), and the
onset velocity rises very rapidly when h(L) is reduced below 0.5. The compliant layers
tested by Gad-el-Hak et al. are much thinner than those in figure 13, and may be
expected to have onset velocities in excess of those used in the experiments. This may
explain why Gad-el-Hak et al. failed to find any SD waves under a laminar boundary
layer. It is also possible SD waves may never form under a laminar boundary layer,
even on a thick compliant layer such as the h(L) = 5 in figure 13, for another reason.
With a distinctly lower onset velocity, convective instability may well dominate the
flow and cause it to undergo transition to a turbulent state before laminar absolute
instability has a chance to set in. In this case, we will merely witness a transition
to turbulence and an ensuing SD instability, under turbulent flow condition, that
completely bypasses laminar absolute instability.

5.9. Three-dimensional wave modes

A preliminary study of three-dimensional wave modes was also carried out as part
of the present study to appraise the significance of three-dimensional effects. The
three-dimensional wave problem was cast in its equivalent two-dimensional form, fol-
lowing Yeo (1992). Results for spanwise-periodic modes (real spanwise wavenumber
β) were obtained. The causality requirement for real-β modes is identical to that for
two-dimensional (β = 0) modes. For general three-dimensional modes (complex α and
β), simultaneous deformation of the Fourier contours in the two wavenumber planes
would be required to reveal the causal pinch points (Bers 1983). Some complex-β
coalescence modes that are contiguous with real-β modes were obtained by a con-
tinuation procedure. These had all turned out, however, to be non-causal, suggesting
the possibility that there may be no absolute instability with spanwise growth. (This
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Figure 14. The onset velocity of convective and absolute three-dimensional modes in a turbulent
boundary layer. Compliant layer with h(L) = 0.4, d(L) = 0.049 and Rδ = 1000: - - -, convective
modes; — . —, absolute modes. Compliant layer with h(L) = 0.2, d(L) = 0.5 and Rδ∗ = 2000: ——,
convective and absolute modes.

does not rule out the possible existence of discrete complex (α, β) absolute instability
modes.)

Figure 14 shows the onset flow velocities of convective and absolute instabilities
for two compliant layers as a function of the oblique wave angle θ = tan−1(β/αr).
Distinct onset convective and absolute instability curves are shown for the more
lightly damped layer (d(L) = 0.049), whereas the highly damped layer (d(L) = 0.5)
only has a single merged curve, similar to the two-dimensional case. For all the
cases considered, the two-dimensional modes clearly have the lowest onset velocities
and are hence the unstable modes (Zhao 1999). This agrees well with the observed
two-dimensional spanwise character of the incipient SD waves. Gad-el-Hak (1986)
did not comment on the two-dimensionality of the fast waves, but the above result
indicates that this is likely to be the case. The two-dimensional character of these
instabilities is also consistent with their being wall modes (see § 5.1 and Yeo 1992).

5.10. Turbulent flow–compliant wall interactions

All instabilities are expected to influence changes to the base flow. The instabilities we
have studied here produce well-defined waves on compliant surfaces that are related
to the outer scales of the boundary layer. In the aftermath of instability, a modified
turbulent flow may be established. The new turbulent flow may experience a higher or
a lower drag than the original base flow. For laminar boundary layer on a flat-plate,
instability typically leads to drag increase owing to an ensuing laminar–turbulent
transition. Surface drag is increased by SD waves acting as roughness elements under
a turbulent boundary layer, but nothing is known for sure about the fast waves. The
recent experiments of Choi et al. (1997) found compliant surfaces under a turbulent
boundary layer to yield drag reductions of up to 7%. The reduction in drag is
associated with an outward shift of the logarithmic region of the boundary layer, a
phenomenon already noted in earlier experiments by Lee, Fisher & Schwarz (1993).
The change in boundary-layer characteristics was attributed to an interaction between
the fine-scale near-wall structures of the turbulent flow and the compliant surface.
As explained in § 2.1, the present model is not able to treat such fine-scale events.
Bushnell, Hefner & Ash (1977) had surmised that near-wall flow–wall interaction
might interfere with the bursting events of turbulence, with beneficial effect on the
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drag. To date, progress in this direction has been hampered by the lack of a suitable
theoretical model to describe the fine-scale interaction between near-wall turbulence
and the boundary.

6. Concluding summary
A linear stability model of incompressible two-dimensional turbulent boundary

layer over viscoelastic compliant layers is developed in the present study. The principal
Reynolds stress and its perturbation are modelled by a mixing-length eddy-viscosity
mechanism. The instabilities are classified as convective or absolute in accordance
with their asymptotic spatio-temporal characteristics. This division corresponds one
for one with the experimental observations of the fast waves and slow/SD waves on
elastic and highly damped viscoelastic compliant surfaces, respectively.

The instability of the turbulent boundary layer is derived from the excitation of
wall modes. The instabilities are hence amplified by an increase in wall compliance,
which may arise from a reduction in the stiffness of the wall material or an increase in
the thickness of the compliant layer. Convective instability usually precedes absolute
instability.

Compliant surfaces with low damping are susceptible to convective instability,
whose onset velocity rises with an increase in wall damping in the typical Class
B fashion. The onset velocity for absolute instability, on the other hand, decreases
with an increase in damping, so that at high levels of damping, the two instabilities
converge as one. Compliant surfaces with high damping are therefore dominated
by an absolute instability, whose spatio-temporal character correlates well with the
nearly stationary appearance and the strong growth of the observed SD waves. This
convergence of onset velocities does not hold for the Blasius (laminar) boundary layer.
Because of the distinctly lower onset velocity for convective instability in a laminar
boundary layer, absolute instability of the flow may be bypassed by the transition of
the flow to a turbulent state owing to the precedent convective instability.

The theoretical model predicts onset velocities that are in fairly good agreement
with the experiments for both fast and slow/SD waves. A preliminary study of three-
dimensional waves suggests that the two-dimensional modes are indeed the most
unstable. This is in agreement with the observed spanwise-aligned appearance of the
incipient SD waves.
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